Neural Network Hardware Implementations

E1.4 Digital integrated circuit implementations
Valeriu Beiu

Abstract

This section considers some of the alternative approaches towards modeling biological
functions by digital circuits. It starts by introducing some circuit complexity issues
and arguing that there is considerable computational and physiological justification that
shallow threshold gate circuits are computationally more efficient than classical Boolean
circuits. We comment on the tradeoff between the depth and the size of a threshold
gate circuit, and on how design parameters like fan-in, weights and thresholds influence
the overall area and time performances of a digital neural chip. This is followed
by briefly discussing the constraints imposed by digital technologies and by detailing
several possible classification schemes as well as the performance evaluation of such
neurochips and neurocomputers. Lastly, we present many typical and recent examples
of implementation and mention the ‘VLSI-friendly learning algorithms’ as a promising
direction of research.

E1.4.1 Introduction

The research on neural networks goes back to the early 1940s (see Section Al.1). The seminal year for
the development of the ‘science of mind’ was 1943 when several articles were published (McCulloch and
Pitts 1943, Craik 1943, Rosenblewghal 1943, 1949, Landahdt al 1943).

Almost immediately different approaches to neural network simulation started to be developed.
Typical of that era was the development of the first neurocomark (Minsky 1954). It was in fact
an electromechanical neurocomputer which was shortly followed byP#reeptron Mark | (Rosenblatt
1958). Both were using resistive circuits (motor-driven potentiometers) for implementing the weights.
Another successful neurocomputer that used resistive weights was Bernard Widdadilse and, later, c1.1.3
madaline They used a type of electronically adjustable resistor called a memistor. Widrow even foended
the first neurocomputer company: the Memistor Corporation. It actually produced neurocomputers during
the early and mid-1960s. More details can be found in Nilsson (1965), Anderson and Rosenfeld (1988)
and Hecht-Nielsen (1989). The neurocomputer industry was born.

In the last decade the tremendous impetus of VLSI technology has made neurocomputer design a really
lively research topic. Hundreds of designs have already been built, and some are available as commercial
products. However, we are far from the main objective as can be clearly seen from figure E1.4.1. Here
the horizontal axis represents the number of synapses (humber of connections), while the vertical axis
represents the processing speed in ‘connections per second’ (CPS). The drawing shows a crude comparison
of the computational potential of different neural network hardware ‘technologies’. It becomes clear that
biological neural networks are far ahead of digital, analog and even future optical implementations of
artificial neural networks.

Focusing only on digital implementations, this section will firstly introduce some circuit complexity
issues (section E1.4.2) and comment on the constraints imposed by digital technologies (section E1.4.3).
Several possible classification schemes for digital implementations of artificial neural networks will also
be discussed in the last and most detailed part (section E1.4.4) which will briefly present many different
implementations.
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Figure E1.4.1. Different hardware alternatives for implementing artificial neural networks, an enhanced
and updated version from Glesner angcRmilller (1994) and lwata (1990).

E1.4.2 Circuit complexity issues

One main line of theoretical research has concentrated on the approximation capabilities of feedforward
networks. It was started in 1987 by Hecht-Nielsen (1987) and Lippmann (1987) who were probably
the first to point to Kolmogorov’'s theorem (Kolmogorov 1957), together with Le Cun (1987). The first
nonconstructive proof that neural networks are universal approximators was given the following year by
Cybenko (1988, 1989) using a continuous activation function. Thus, the fact that neural networks are
computationally universal—with more or less restrictive conditions—when modifiable connections are
allowed, was established. These results have been further enhanced by Funahashi (1989), Funahashi and
Nakamura (1993), Hornik (1991, 1993), Hormkal (1989, 1990), Koiran (1993) and Leshabal (1993).

All these results—with the partial exception of Koiran (1993)—were obtained ‘provided that sufficiently
many hidden units are available’. This means that no claim on the minimality of the resulting network
was made, the number of neurons needed to make a satisfactory approximation being in general much
larger than the minimum needed.

The other line of research was to find tight bounds, and the problem can be stated as finding the
smallest network (i.e., smallest number of neurons) which can realize an arbitrary function given a set of
m vectors (examples, or points) in dimensions. If the function takes as output just O or 1, then it is
called a dichotomy. This aspect of the smallest network is of great importance when thinking of hardware
implementations. The networks considered are feedforward neural networks with threshold activation
function. This is probably due to the fact that this line of research was continuing on from the rigorous
results already obtained in the literature dealing with threshold logic from the 1960s (Cameron 1969,
Cohen and Winder 1969, Cover 1965, Dertouzos 1965, Fischler 1962, Hu 1965, Kautz 1961, Klir 1972,
Lewis and Coates 1967, Lupanov 1973, Minnick 1961, Minsky and Papert 1969, Muroga 1959-1979,
Murogaet al 1961, Neciporuk 1964, Nilsson 1965, Red’kin 1970, Sheng 1969, Winder 1962—-1971). The
best result was that multilayer perceptrorwith only one hidden layer having — 1 nodes could computes1.2
an arbitrary dichotomy (sufficient condition). The main improvements since then have been as follows:

e Baum (1988b) presented a network with one hidden layer haviryg:] neurons capable of realizing
an arbitrary dichotomy on a set af points in general position iR"; if the points are on the corners
of then-dimensional hypercube (i.e., binary vectors),-1 nodes are still needed (the general position
condition is now special and strict).

e Huang and Huang (1991) proved a slightly tighter bound: ddly (m — 2)/n] neurons are needed
in the hidden layer for realizing an arbitrary dichotomy on a set:gfoints which satisfy a more
relaxed topological assumption as only the points forming a sequence from some subsets are required
to be in general position; also the — 1 nodes condition was shown to be the least upper bound
needed.
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e Arai (1993) recently showed that — 1 hidden neurons are necessary for arbitrary separability (any
mapping between input and output for the case of binary-valued units), but improved the bound for
the two-category classification problemtg'3 (without any condition on the inputs).

A study which somehow tries to unify these two lines of research has been published by Bulsari
(1993) who gives practical solutions for one-dimensional cases including an upper bound on the number
of nodes in the hidden layer(s). Extensions toibh@imensional case using three- and four-layer solutions
are derived under piecewise constant approximations having constant or variable width partitions and under
piecewise linear approximations using ramps instead of sigmoids.

To strengthen such claims, we shall go briefly through some basic circuit complexity results
(Papadopoulos and Andronikos 1995, Parberry 1994, Paterson 1992, Pippenger 1987, Roychowdhury
et al 1991a, b, 1994b, Siat al 1994) and argue that there is considerable computational and physiological
justification that shallow (i.e., having relatively few layers) threshold gate circuits are computationally
more efficient than classical Boolean circuits. When considering computational complexity, two classes
of constraints could be thought of:

e Some arising from the physical constraints (related to the hardware in which the computations are
embedded) and including time constants, energy limitations, volumes, geometrical relations and
bandwidth capacities.

e Others are logical constraints: (i) computability constraints and (i) complexity constraints which give
upper and/or lower bounds on some specific resource (e.g., size and depth required to compute a
given function or class of functions).

The first aspect when comparing Boolean and threshold logic is that they are equivalent in the sense
that any Boolean function can be implemented using either logic in a circuit of depth-2 and exponential
size (simple counting arguments show that the fraction of functions requiring a circuit of exponential size
approaches one as— oo in both cases). Yet, threshold logic is more powerful than Boolean logic as

a Boolean gate can compute only one function whereas a threshold gate can compute up to the order of
2*"* functions by varying the weights, with/2 < « < 1 (see Muroga 1962 for the lower bound, and
Muroga 1971 and Winder 1962, 1963 for the upper bound). An important result which clearly separates
threshold and Boolean logic is due to Yao (1985) (see algstatl 1986 and Smolensky 1987) and states
that in order to compute a highly oscillating function like PARITY in a constant depth circuit, at least
exple(n¥)¥?] Boolean gates with unbounded fan-in are needed (Fatrat 1981, Paturi and Saks 1990).

In contrast, a depth-2 threshold gate circuit for PARITY has linear size.

Another interesting aspect is the tradeoff between the depth and the size of a circuit (Beiu 1994, 1997,
Beiu and Taylor 1996a, Beist al 1994c, Siu and Bruck 1990c, Sit al 1991b). There exists a very
strong bias in favor of shallow circuits (Judd 1988, 1992) for several reasons. First, for a fixed size, the
number of different functions computable by a circuit of small depth is larger than the number of those
computed by a deeper circuit. Second, it is obvious that such a circuit is also faster, as having a small(er)
depth. Finally, one should notice that biological circuits must be shallow—at least within certain modules
like the cortical structures—as the overall response time (e.g., recognizing a known person from a noisy
image) of such slow devices (the response time of biological neurons being at least in the 10-ms range due
to the refractory period) is known to be in the few hundred millisecond range. Other theoretical results
(Abu-Mostafa 1988a, b) also support the shallow architecture of such circuits.

A lot of work has been devoted to finding minimum size and/or minimum constant-depth threshold
gate circuits (Hajnakt al 1987, Hofmeisteet al 1991, Razborov 1987, Roychowdhuey al 1994a, Siu
and Bruck 1990a, Siet al 1990, 1993b, Siu and Roychowdhury 1993, 1994) but little is known about
tradeoffs between those two cost functions (Befwal 1994c, Siuet al 1991b), and even less about how
design parameters like fan-in, weights and thresholds influence the overall area and time performances of
a digital neural chip. Since for the general case only existence exponential bounds are known (Bruck and
Smolensky 1992, Siet al 1991b), it is important to isolate classes of functions whose implementations
are simpler than that of others (e.g., shallow depth and polynomial size (Rief 1987)). Several of the
corner-stone results obtained so far have been gathered in table E1.4.1n Ketlee number of input
variables, and the nomenclature commonly in use is (see Amaldi and Mayoraz 1992, Papadopoulos and
Andronikos 1995, Parberry 1994, Roychowdhetyal 1994b, Siuet al 1994, Wegener 1987):

e AC* represents the circuits of polynomial size with AND and OR unbounded fan-in gates and depth
O(log" n)
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e NCF is the class of Boolean functions with bounded fan-in, and having sgizgolynomial) and
depthO(log* n)

e TP the family of functions realized by polynomial size threshold gate circuits with unbounded fan-in
and constant depth

e LTy(LTy) is the class of Boolean functions computed by linear threshold gates with real weights
(bounded by a polynomial in the number of inpuits | < n¢ (Bruck 1990))

e LT, is the class of Boolean functions computed by a polynomial size, depitcuit of LT, gates
(Bruck 1990, Siu and Bruck 1990b)

e PT; is the class of Boolean functions that can be computed by a single threshold gate in which the
number of monomials is bounded by a polynomiakiriBruck 1990, Bruck and Smolensky 1992)

e PT; is the class of Boolean functions computed by a polynomial size, depiteuit of PT; gates

e PL; is the class of Boolean functions for which the spectral nésms bounded by a polynomial in
n (Bruck and Smolensky 1989)

e PlL, is the class of Boolean functions with the spectral ndtgt bounded by a polynomial in
(Bruck and Smolensky 1989)

e MAJ; is the class of Boolean functions computed by linear threshold gates havingt@neights
(Mayoraz 1991, Siu and Bruck 1990c)

e MAJ; is the class of Boolean functions computed by a polynomial size, deptreuit of M AJ;
gates (Albrecht 1992, Mayoraz 1992, Siu and Bruck 1993).

Recently three complexity classes for sigmoid feedforward neural networks have been defined and linked
with the (classical) above-mentioned ones:

e NN* is defined (Shawe-Tayloet al 1992) to be the class of functions which can be computed
by a family of polynomially sized neural networks with weights and threshold values determined
to b bits of precision (accuracy), fan-in equal o and depthi, satisfying logA = O[(logn)*/?],
blogA = O(logn) andilog A = O(log* n)

e NNk, is defined (Beilet al 1994e, Beiu and Taylor 1996b) to be the class of functions which can be
computed by a family of polynomially sized neural networks which satisfies slightly less restrictive
conditions for fan-in and accuracy: lag= O(log*~¢ n) andb = O(log'~* n)

e NN is defined (Beiuet al 1994d, Beiu and Taylor 1996b) to be the class of functions which can
be computed by a family of polynomially sized neural networks having linear fan-in and logarithmic
accuracy A = O(n) andb = O(logn)).

Still, in many situations one is concerned by the values of a function for just a vanishing small fraction
of the 2 possible inputs. Such functions can also be implemented in poly-size shallow circuits (the size
and depth of the circuit can be related to the cardinal of the interesting inputs (Beiu 1996b, Beiu and
Taylor 1996a, Beitet al 1994a, Tan and Vandewalle 1992, 1993). Such functions are also appealing from
the learning point of view: the relevant inputs being nothing else but the set of training examples (Beiu
1996b, Beiu and Taylor 1995b, Liniat al 1989, Takahashet al 1993).

Circuit complexity has certain drawbacks which should be mentioned:

e The extension of the poly-size results to other functions and to the continuous domain is not at all
straightforward (Maasst al 1991, Siu 1992)

e Even the known bounds (for the computational costs) are sometimes weak

e Time (i.e., delay) is not properly considered

e All complexity results are asymptotic in nature and may not be meaningful for the range of a particular
application.

But the scaling of some important parameters with respect to some others represents quite valuable results:

e Area of the chip (wafer) grows like the cube of the fan-in
e Area of the digital chip (wafer) grows exponentially with accuracy.

Furthermore, it was shown recently that the fan-in and the accuracy are linearly dependent parameters.
If the number of inputs to one neuron s the reduction of the fan-in by decomposition techniques has
led to the following results:

e Ifthe fan-inis reduced to (small) constants, the size grows slightly faster than the square of the number
of inputs (i.e.,n?logn) while the depth growth is lower than logarithmic (i.e., lggog logn)
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Table E1.4.1. Circuit complexity results.

Author(s) Result(s) Remark(s)
Neciporuk Lower bound on thsize of a threshold size = 2. (2" /n)Y/?
(1964) circuit for ‘almost all’z-ary Boolean
functions.
Lupanov Upper bound for thsize of a threshold size <2 (2"/n)Y? x {14+ Q[(2"/n)Y3)
(2973) circuit for ‘almost all'z-ary Boolean depth =4
functions.
Yao There are Boolean functions for which Conjecturac® £ NC?
(1989) depth(k — 1) threshold gate circuit of

unbounded fan-in (i.eT C° circuits)
require exponential sizdepthk Boolean
circuits of unbounded fan-in.
Allender Any Boolean function computable by a  size = n© (09"
(1989) polynomial size constadepthlogic circuit depth = 3
with unbounded fan-in (i.e AC?) is also fan-in unbounded
computable by alepth3 neural network
(threshold gate circuit) of superpolynomial
size: AC° # TC°.
Immermann and Landau  ConjectureC® = NC?

(1989)
Bruck LT, Cc PT, C LT, Existence proofs
(1990) e
Siu et al MUL (x,y) € LT, depth = const
(1991a) X mod p, X" mod p, c* modp € LT, size<n*
X", X € LTs _ weights < n°
DIV(x,y) €LTs fan-in unbounded
MUL (x4, ...,x,) € ﬁs Partly constructive
Siuet al Upper bound on theizeor implementing  depth =3
(1991b) any Boolean function. size = O(2'/?)
fan-in unbounded
Existence proofs
Lower bound on theizeor implementing  size = Q(2"/°)
any Boolean function. fan-in unbounded
Existence proofs
Bruck and Smolensky PL; C PT; C PL, Existence proofs
(1992) PL; C PTy C MAJ,
AC° ¢ PL,
AC° ¢ PL,,
AC° ¢ MAJ,
Siu and Bruck LTy C LT; depth= const
(1992) LTy © LT+ size < n
MUL (x, y) € LT, A weights < n¢
MAX (x1, ..., x,) € LT3 fan-in unbounded
SORT(x1,...,x,) € LT, Existence proofs
Albrecht Depth2 threshold circuits require depth =2
(1992) superpolynomidan-in. Polynomial size=(1%¢g) 271
threshold circuits have more than two weights € {—1,0, +1}
layers. fan-in unbounded
Shawe-Taylort al NCk c NN* C AC* Partly constructive
(1992)
Beiu et al Nk Constructive proofs
(1994d) NN¥C NN, C {NN" c NCH2 (based on binary trees
a of Boolean gate adders
Beiu et al LT se Constructive proofs
(1994¢) NN%, C NNX C {ﬁOQ " (based on binary trees of
N n log*n threshold gate adders)

MA ]|ng+1 . CMA ]|ng+2 "
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Table E1.4.1. Continued.

Author(s) Result(s) Remark(s)
Goldmann and Karpinski LT, ¢ MAJ;1 Existence proof.
(1994) (improves on Siu and Bruck 1992 and implies:  An important aspect
LT+, C MAJ. - is that such a
NNk ¢ ZT"’W Llogt* ) simulation is possible
log** even if the depthi
grows with the
number of variables
Beiu and Taylor NCk1 - Constructive proofs
(1996b) NNk C C LT gqe+1 (based on carry save
A MA‘I|0 (il [o]] n o
g addition)

e Boolean decomposition can be used for reducing the fan-in, but at the expense of a superpolynomial
increase in siz&(n'°9")1/2) and a double logarithmic increase in deokbg? n).

Much better results can be achieved for a particular function.

Due to such scaling problems, theoretical results show that we can implement (as digital chips or
wafers) only neural networks having (sub) logarithmic accuracy and (sub) linear fan-in (with respect to
the number of inputs). From the practical point of view (the two parameters being dependent) these
should be translated to (sub) logarithmic both for accuracy and for fan-in. The main conclusion is that full
parallel digital implementations of neural networks (as chips or wafers) are presently limited to artificial
neural networks having 2010 inputs and about 810" neurons of 18-1C° inputs each. As will be
seen later, these values are in good accordance with those from chips and wafers which stick as much as
possible to a parallel implementation. Although we do expect that technological advances will push these
limits, they cannot be spectacular—at least in the near future.

Such drastic limitations have forced designers to approach the problem from different angles:

By using time-multiplexing
By building arrays of (dedicated) chips working together and exploiting as much as possible (in one
way or another) the architectural concept of pipe-lining

e By using non-conventional techniques such as: stochastic processing (Gorse and Taylor 1989a,
Koéllmannet al 1996), sparse memory architecture (Aihataal 1996) or spike processing (Jahnke
et al 1996).

These allow the simulation of far larger neural networks, by mapping them onto the existent (limited)
hardware.

E1.4.3 Digital VLSI

Digital neurochips (and, thus, neurocomputers) benefit from the legacy of the most advanced human
technology—digital information processing. VLSI technology is the main support for electronic
implementations. It has been mature for many years, and allows a large number of processing elements
to be mapped onto a small silicon area. That is why it has attracted many researcheet @IED90,
Alspectoret al 1988, Barheret al 1992, Beiu 1989, Beiu and Rosu 1985, Boseml 1992, Del Corso

et al 1989, Disanteet al 1989, 1990a, b, Faggin 1991, Fornaciatrial 1991b, Holler 1991, Jackel 1992,
Mackie et al 1988, Personnaget al 1989, Tewksbury and Hornak 1989, Treleawatral 1989, Weinfeld

1990).

The main constraints of VLSI come from the fact that the designer has to implement the processing
elements on a two-dimensional limited area and—even more—connect these elements by means of a
limited number of available layers. This leads to limited interconnectivity as has been discussed in Akers
et al (1988), Baker and Hammerstrom (1988), Hammerstrom (1988), Reyneri and Filipi (1991), Szedegy
(1989) and Walkert al (1989) and limited precision (higher precision requires larger area—both due
to storing and processing—leading to fewer neurons per chip (Deshlab 1990, Denker and Wittner
1988, Myhill and Kautz 1961, Obradovic and Parberry 1990, Steveasah 1990, Walker and Akers
1992)). The shallowness of slow biological neural networks has to be traded off for (somehow) deeper
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networks made of higher speed elements. Beside these, the power dissipation might impose another severe
restriction (especially for wafer scale integration—WSI). The tradeoff is either to reduce the number of
neurons per chip (working at high speed) or reduce the clock rate (while having more neurons). Lastly,
the number of available pins to get the information on and off the chip is another strong limitation.

From the biological point of view, synapses have to be restricted on precision and range to some
small number of levels (Baum 1988a, Baum and Haussler 1989). Lower bounds on the size of the network
have been obtained both for the networks with real valued synaptic weights and for the networks where
the weights are limited to a finite number of possible values (Siu and Bruck 1990a). These bounds differ
only by a logarithmic factor, but to achieve near optimal performafi¢e:) levels are required (Baum
1988b)—wheren is the number of training examples given. A similar logarithmic factor has been proven
in Hong (1987), Raghavan (1988) and Sontag (1990) when replacing real weights by integers. Some
results concerning the needed number of quantization levels have already been presented in Section E1.2.2
and can be supplemented by many references. For example, Baker and Hammerstrom (198&Y, &ollis
(1990), Hdhfeld (1990), Shoemakeat al (1990), Allipi (1991), Asanow and Morgan (1991), Holt and
Hwang (1991, 1993), Nigri (1991) and Xie and Jabri (1991) argue that the execution phase needs roughly
8 bits (6. .. 10), while learning demands about 16 bits4...18). There are few exceptions: Halgamuge
et al (1991) being the only pessimistic one claiming that 32 bits are needed, and Reyneri and Filipi (1991)
claiming that 20Q.. 22 bits are needeith general but explicitly mentioning that this value can be reduced
to 14...15 bits or even lower by properly choosing the learning rate (for backpropagation). New weight
discretization learning algorithms can go much lower: to just several bits (see Section E1.2.4). This makes
them ideal candidates for digital implementations.

Today, the digital VLSI design is still the most important design style. The advantages of the dominant
CMOS technology are small feature sizes, lower power consumption and a high signal-to-noise ratio. For
neural networks these are supplemented by the following advantages of digital VLSI design styles (see
Glesner and &chmilller 1994 and Hammerstrom 1995 for more details):

Simplicity (an important feature for the designer)

High signal-to-noise ratio (one of the most important advantages over analog designs)
Circuits are easily cascadable (as compared to analog designs)

Higher flexibility (digital circuits in general can solve many tasks)

Reduced fabrication price (certainly of interest for customers)

Many CAD (computer aided design) systems are available to support a designer’s work
Reliable (as fabrication lines are stable).

Digital VLSI implementations of a neural network are based on several building blocks:

e Summation can easily be realized by adders (many different designs are possible and well-known:
combinatorial, serial, dynamic, carry look ahead, manchester, carry select, Wallace tree)

e Multiplication is usually the most area-consuming operation and in many cases a multiplier is time-
multiplexed (classical solutions are serial, serial/parallel and fully parallel, each of which differ in
speed, accuracy and area)

e Nonlinear transfer function (very different nonlinear activation functions (Das Gupta and Schnitger
1993) can be implemented by using circuits for full calculations, but most digital designs use either
a small lookup table (Nigri 1991, Niget al 1991) or—for even lower area and higher precision—a
dedicated circuit for a properly quantized approximation, as can be seen in table E1.4.2 and also in
Murtagh and Tsoi (1992), Sammut and Jones (1991)

Storage elements (are very common—either static or dynamic—from standard RAM cells)
Random number generators (are normally realized by shift registers with feedback via XOR-gates).

E1.4.4 Different implementations
E1.4.4.1 General comments

As the different number of proposed architectures or fabricated chips, boards and dedicated computers
reported in the literature is on the order of hundreds, we cannot mention all of them here. Instead, we
shall try to cover important types of architectures by several representation implementations—although
certain readers could disagree sometimes with our choice. For a deeper insight the reader is referred to
the following books: Eckmiller and von der Malsburg (1988), Eckmidéeal (1990), Sodek and Sotek
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Table E1.4.2. Digital implementations of the sigmoid—alternatives to lookup tables.

Author(s) Result(s) Remark(s)
Myers and Hutchinson Approximation of an A-law 7 segments piecewise. Error
(1989) sigmoid-like function. < +4.89% for [-8, 8].
Alippi et al Approximations of a classical Errar £13.1% with 5 steps.
(1990a) sigmoid function by sum of Four comparators and several
1-5 steps. logic gates.
Alippi et al Approximations of a classical Sum of 1-5 steps (Alippial
(1990b) sigmoid function. 1990a).
Pesulimaet al Approximation of the classical Digital implementation: LFSR.
(1990) sigmoid by two exponentials. Errer +2.45% for [-8, 8].
Saucier and Ouali Silicon compilation. Approximation by Taylor series.
(1990)
Alippi et al Relations between convergence Introduces a general class of
(1991a) of learning and precision. nonlinear functions.
Alippi and Storti-Gajani  Approximations of a classical Piecewise by the set of points
(1991) sigmoid function. (£n, 1/2"Y).
Hohfeld and Fahlman Probabilistic weight updates Needed precision for sigmoid
(1991) (down to 4 hits). 4-6 bits.
Krikelis Approximation of the classical Piecewise linearization with 3
(1991) sigmoid function. segments ir4, 4]. Errors
< +5.07%.
Nigri Precision required for Look-up table for 8 bits; ‘exact’
(1991) backpropagation. only for-R, 2].
Siggelkowet al Analyzesaccuracyand shows Piecewise linearization of the
(1991) that a problem-dependent sigmoid with 5 segments. No
synthesis is required. hardware suggested.
Spaanenburgt al Bit-serial approximation of Piecewise linearization of the
(1991) binary logarithmic computations  sigmoid with 5 segments (4-6
(problem dependent complex  bits). Errors around:10%. No
parameterk hardware suggested.
Beiu Sum of steps approximation of a  Six ‘threshold gates’ solution
(1992) particular sigmoid. with weights-1, 1, 2}. Error
< +8.1%.
Deville General method for piecewise Requires 10 floating-point
(1993) linearization. Highest precision numbers and 5 multiplications!
(= +£1.14%).
Beiu et al Piecewise approximation of the Errors+1.9% using only a
(1993, 1994b) classical sigmoid. shift register and several logic
gates.

(1988), Sami (1990), Zornetzext al (1990), Antognetti and Milutinovic (1991), Ramacher andckert

(1991), Sanchez-Sinencio and Lau (1992), Hassoun (1993), Przytula and Prasama (1993), Delgado-Frias
and Moore (1994) and Glesner anéddmiller (1994) together with the references therein. Several
overview articles or chapters can also be recommended: Alspector and Allen (1987), Madkie
(1988), Jackekt al (1987), Jackel (1991), Przytula (1988), DARPA (1989), Del Coes@l (1989),

Denker (1986), Goseet al (1989), Personnaz and Dreyfus (1989), Treleaven (1989), Trelesivah

(1989), Schwartz (1990), Burr (1991, 1992), Nordstrand Svensson (1991), Greff al (1991—having

many references, 1993), Hirai (1991), Holler (1991), lenne (1993a, b), Lindsey and Lindblad (1994)
and the recent ones—Heemskerk (1995), Hammerstrom (1995) and Morgan (1995). The proceedings of
MicroNeuro (International Conference on Microelectronics for Neural Networks) would also prove useful
for those readers wishing to find latest details on different implementations or the most recent proposals.
Many other conferences on neural networks have special sessions on hardware implementations: NIPS
(Neural Information Processing Systems), IJCNN (International Joint Conference on Neural Networks),
ICANN (International Conference on Artificial Neural Networks), WCNN (World Congress on Neural
Networks), IEEE ICNN (IEEE International Conference on Neural Networks) just to mention some of the
most widely known.
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One of the difficult problems when discussing dedicated architectures for artificial neural networks
is how to classify them. There are many different ways of classifying such architectures, and we shall
mention here some which have already been presented and used in the literature.

e Afirst classification can be made based on the division of computer architectures due to Flynn (1972):
single instruction stream, single datastream (SISD); single instruction stream, multiple datastreams
(SIMD); multiple instruction streams, single datastream (MISD)—which does not make too much
sense; multiple instruction streams, multiple datastreams (MIMD). Most of the architectures proposed
for implementing neural networks belong to the SIMD class, and thus the group should be further
subdivided into: systolic arrays, processor arrays (linear, mesh, multidimensional) and even pipelined
vector processors.

e Another classification has been based on ‘how many and how complex’ processing elements are
(Nordstbm and Svensson 1991). Computer architectures can be characterized by the level of
parallelism which can be: moderately parallel (16 to 256 processors), highly parallel (256 to
4096 processors) or massively parallel (more than 4096 processors). As a coarse measure of the
‘complexity’ of the processing elements, the bit-length (i.e., the precision) of a processing element
has been used.

e A much more simple classification of neurocomputers has been suggested by Heemskerk (1995):
those consisting of a conventional computer and an accelerator board; those built from general purpose
processors; and those built from dedicated neurochips.

e A completely different classification was suggested by Glesner @ctirRiller (1994) based on the
following three criteria: biological evidence (mimicking biological systems; mimicking on a higher
level; or without biological evidence), mapping onto hardware (network-oriented; neuron-oriented; or
synapse-oriented) and implementation technology (digital; analog; or mixed).

Only for digital electronic implementations a simple three-class subclassification scheme—somehow similar
to that of Heemskerk (1995)—could be the following (Beiu 1994).

e Dedicated digital neural network chipfKung 1989, Kung and Hwang 1988, 1989a), Wawrzynek
et al (1993) can reach fantastic speeds of up to 1G connections per second. Several examples of
such chips are: L-Neuro from Philips (Duranton 1996, Durargbal 1988, Duranton and Maudit
1989, Duranton and Sirat 1989, 1990), X1 and N64000 of Adaptive Solutions (Adaptive Solutions
1991, 1992, Hammerstrom 1990), Ni1000 from Intel (Scofield and Reilly 1991, Hetlael 1992),
MA16 from Siemens (Ramacher 1990, 1992, Ramacher ammkét 1991, Ramachet al 19914, b,
1993), p-RAM from King's College London (Clarkson and Ng 1993, Clarksbal 1989-1993) and
Hitachi's WSI (Yasunagat al 1989, 1990) and the 1.5-V chip (Watanadieal 1993), SMA from
NTT (Aiharaet al 1996), NESPINN from the Institute of Microelectronics, Technical University of
Berlin (Jahnkeet al 1996), or SPERT from the International Computer Science Institute, Berkeley
(Asanovt et al 1992, 1993d, Warwzynek 1993, 1996).

e Special purpose digital coprocesso(sometimes called neuroaccelerators) are special boards that
can be connected to a host computer (PCs and/or workstations) and are used in combination with
a neurosimulator program. Such a solution tries to take both advantages: accelerated speed and
flexible and user-friendly environment. Well-known are the delta Floating Point Processor from
SAIC (DARPA 1989) which can be connected to a PC host, and the ones produced by Hecht-Nielsen
Computers (Hecht-Nielsen 1991): ANZA, Balboa. Their speed is in the order of 10M connections
per second improving tenfold on a software simulator. Some of them are using conventional RISC
microprocessors, some use DSPs or transputers, while others are built with dedicated neurochips.

e Digital neurocomputerscan be considered the massively data-parallel computers.  Several
neurocomputers are: WARP (Arnould 1985, Kung and Webb 1985, Annaratioak1987), CM
(Means and Hammerstrom 1991), RAP (Morgaral 1990, Beck 1990), SANDY (Katet al 1990),

MUSIC (Gunzingeret al 1992, Miller et al 1995), MIND (Gamragt al 1991), SNAP (Hecht-Nielsen

1991, Means and Lisenbee 1991), GF-11 (Witbrock and Zagha 1990, Jackson and Hammerstrom
1991), Toshiba (Hirai 1991), MANTRA (Lehmann and Blayo 1991, Lehmetrad 1993), SYNAPSE
(Ramacher 1992, Ramachetral 1991a, b, 1993, Johnson 1993a), HANNIBAL (Myeatsal 1993),
BACCHUS and PAN IV (Huchet al 1990, ®chnilller and Glesner 1991, Palm and Palm 1991),
PANNE (Milosavlevichet al 1996), 128 PE RISC (Hiraiwat al 1990), RM-nc256 (Erdogan and
Wahab 1992), CNAPS (Adaptive Solutions 1991, 1992, Hammerstrom 1990), Hitachi WSI (Boyd
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1990, Yasunagat al 1989-1991), MasPar MP-1 (Grajskt al 1990, MasPar 1990a—c, Nickolls
1990), and CNS-1 (Asandviet al 1993a)—just to mention only the most well-known.

But even such a subclassification is not very clear cut, as in too many cases there are no borders. For
example, many neurocomputers have been assembled based on identical boards built with custom designed
neurochips: SNAP uses the HNC 100 NAP chip; MANTRA uses the GENES |V and the GACDL1 chips;
HANNIBAL uses the HANNIBAL chip; SYNAPSE uses the MA 16 chip; MasPar MP-1 uses the MP-1
chip; CNAPS uses the X1 or the N64000 chip; CNS-1 will use the Torrent and Hydrant chips. That
is why we have decided in this section to use a more detailed classification which starts with the first
historical neurocomputers and continues through acceleration boards, slice architectures, arrays of DSPs
(digital signal processors), arrays of transputers, arrays of RISC processors, SIMD and systolic arrays built
of dedicated processing elements and continuing with several other alternatives and ending with some of
the latest implementations.

Beside classification and classification criteria, another problem when dealing with neurocomputers
and neurochips is their performance evaluation. While the performance of a conventional computer is
usually measured by its speed and memory, for neural networks ‘measuring the computing performance
requires new tools from information theory and computational complexity’ (Abu-Mostafa 1989). Although
the different solutions presented here will be assessed for size, speed, flexibility and cascadability, great
care should be taken especially when considering speed. Hardware approaches are very different, thus
making it almost impossible to run the same benchmark on all systems. Even for machines which support
backpropagation (which is commonly used as a benchmark), the average number of weight updates per
second or CUPS (connection updates per second) reported in publications shows different computational
power—even for the same machine! This is due to: different precision of weights; the use of fixed
point representation in some cases and the size of the network to be simulated (larger networks may be
implemented more efficiently). A typical example of two differdaackpropagatiorimplementations onci.2.3
WARP can be found in Pomerleaet al (1988). For architectures which do not support learning, the
number of synaptic multiplications per second or CPS (connections per second) will be mentioned, but
the same caution should be taken due to different word lengths (precision of computation) and network
architectures. Normalizing the CPS value by the number of weights leads to CPS per weight or CPSPW,
and was suggested as a better way to indicate the processing power of a chip (Holler 1991). Precision can
also be included in the processing performance by considering a connection primitive per second (CPPS)
which is CPS multiplied by bits of precision and by bits for representing the inputs (van Ketlaln
1994). Another reason for taking such speed measurements with a lot of care is that some of the articles
report only on a small test chip (and the results reported are extrapolations to a future full-scale chip or to
a board of chips and/or neurocomputer), or that only peak values are given.

Finally, for neurochips and neurocomputers which are dedicated to a certain neural architecture (e.g.,
the Boltzmann machinéMurray et al 1992, 1994); Kohonen'self-organizing feature map@iochetet al ci1.4,c211
1991, Goserrt al 1989, Riping and Rickert 1996, Trybeet al 1990, Thiran 1993, Thiraet al 1994,

Thole et al 1993); Hopfield networkgBlayo and Hurat 1989, Gascuet al 1992, Graf and de Vegvarisa
1987a, b, Grakt al 1987, Savran and Moid 1991, Sivilottiet al 1986, Weinfeld 1989, Yasunagd al

1989, 1990)Neocognitron(Trotin and Darbel 1993, White and Elmasry 1992lial basis functionand c2.1.3, c16.2
restricted coulomb energft eBouquin 1994, Scofield and Reilly 1991)), or for those which are builicas.1
stochastic devicegClarkson and Ng 1993, Clarksaet al 1993a, b, Klimannet al 1966), it is almostc1.4
impossible to assess their speed. It should be mentioned that due to such unsurmountable problems there
is usually little if any information on benchmarks.

E1.4.4.2 Typical and recent examples

We shall firstly mention Mark 11l and IV from a historical point of view.

e Mark lll was built at TRW, Inc., during 1984 and 1985 Hecht-Nielsen (1989). The design used
eight Motorola M68010-based boards running at 12 MHz, with 512 kbytes of DRAM memory each.
The software environment used was called ANSE (Artificial Neural Systems Environment). The
original Mark 1ll had a capacity of approximately 8000 processing elements (neurons) and 480 000
connections, and had a speed of 380000 CPS (large instar network using Grossberg learning).

e Mark IV was also built at TRW, Inc., but under funding from the Defense Science Office of the
Defense Advanced Research Projects Agency (DARPA). A detailed description is given by Hecht-
Nielsen (1989) who, together with Todd Gutschow, was one of the designers. It was capable of
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implementing as many as 262 144 processing elements and 5.5 M connections, and had a sustained
speed of 5 MCPS, whether or not learning was taking place Kuczeivak(1988). It had a mass

of 200 kg and drew 1.3 kW of power. The basic computing unit was a 16-bit Texas Instruments
TMS32020 DSP. The idea was that Mark 1V would be a node of a larger neurocomputer (which was
never intended to be constructed).

In the meantime most of the neural network simulations have been performed on sequential computers.
The performance of such software simulation was roughly between 25000 and 250000 CPS in 1989
(DARPA 1989). Fresh results show impressive improvements on computers having just one processing
element.

IBM 80486/50MHzexhibits 1.1 MCPS and 0.47 MCUPS {Mer et al 1995).

Sun (Sparcstation 10) has 3.0 MCPS and 1.1 MCUPdlI&f et al (1995).

NEC SX-3(supercomputer) achieves 130 MCUPS (the implementation was presented by Koike from
NEC at the Second ERH-NEC Joint Workshop on Supercomputing 18@2h/ but no published
English reference seems to be available). As NEC SX-3 has 5.9 Gflops it is expected that a similar
performance would be obtained on a Cray Y-MP/8 (which has 2.5 Gflops).

Similar results have been reported for Hypercube FPS 20 (Roberts and Wang 1989, Neibur and Brettle
1992) and CM (Deprit 1989, Zhargt al 1990). At least one order of magnitude increase can be expected
on Fujitsu, Intel Paragon or on the NEC SX-4.

As a first alternative and aimed at increasing the speed of simulations on PCs and workstations,
special acceleration boardeave been developed Williams and Panayotopoulos (1989).

e Delta Floating Point Processofrom the Science Application International Corporation (SAIC), has
separate addition and multiplication parts; it runs at 10 MCPS and 1-2 MCUPS$dlSand Sotek
1988, Works 1988).

e SAIC later developedSIGMA-1 which has a 3.1 M virtual interconnections and has reached
11 MCUPS (Treleaven 1989).

e ANZA Plusfrom Hecht-Nielsen Computers (Hecht-Nielsen 1988) has a 4-stage pipelines Harvard
architecture. It can go uptl M virtual processing elements, 1.8 MCUPS (Atlas and Suzuki 1989)
and 6 MCPS (Treleaven 1989).

e Intel i860 RISC processor is used in thyriad MC860 board and in thdalboa board from HNC,
showing around 7 MCUPS (Hecht-Nielsen 1991).

Many other accelerator boards are mentioned in a tabular form by Lindsey and Lindblad (1994).
One simple way to increase performance even more is to use processors in parallel. A classical design
style was used foslice architecturesand several representative models are detailed.

e Micro Devices have introduced the NBS (Neural Bit Slice) chip MD1220 (Micro Devices 1989a—c,
1990). The chip has eight processing elements with hard-limit thresholds and eight inputs (Yestrebsky
et al 1989). The architecture is suited for multiplication of a 1-bit synapse input with a 16-bit weight.
The chip only allows for hard-limiting threshold functions. The weights are stored in standard RAM,
but only eight external weights per neuron and seven internal weights per neuron are supported.
Such a reduced fan-in (maximum 15 synapses per neuron) is quite a drastic limitation. This can
be avoided by additional external circuits, but increasing the fan-in decreases the accuracy (as the
16-bit accumulator can overflow). The chip has a processing rate of 55 MIPS which roughly would
correspond to 8.9 MCPS.

e A similar chip is theNeuralogix NLX-420Neural Processor Slice from Neuralogix (1992), which
has 16 processing elements. A common 16-bit input is multiplied by a weight in each processing
element in parallel. New weights are read from off-chip. The 16-bit weights and inputs can be user
selected as 16 1-bit, 4 4-bit, 2 8-bit or 1 16-bit value(s). The 16 neuron sums are multiplexed through
a user-defined piecewise continuous threshold function to produce a 16-bit output. Internal feedback
allows for multilayer networks.

e The PhilipsL-Neuro 1.0chip (Duranton and Maudit 1989, Duranton and Sirat 1989, Theeteh
1990, Mauditet al 1992) was designed to be easily interfaced to transputers. It also has a 16-bit
processing architecture in which the neuron values can be interpreted as 8 2-bit, 4 4-bit, 2 8-bit or
1 16-bit value(s). Unlike the NLX-420, thers & 1 kbyte on-chip cache to store the weights. The chip
has 32 inputs and 16 output neurons and only the loop on the input neurons is parallelized (weight
parallelism). This chip has on-chip learning with an adjustable learning rate. The transfer function is
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computed off-chip. This allows for multiple chips to provide synapse-input products to the neurons
and, thus, to build very large networks. An experiment with 16 L-Neuro 1.0 (Maatcitl 1991)

was able to simulate networks with more than 2000 neurons and reached 19 MCPS and 4.2 MCUPS.
The work has been continued:LaNeuro 2.0architecture was reported (Dejean and Caillaud 1994),
followed recently (Duranton 1996) Hy-Neuro 2.3(see the paragraph on the latest implementations).

e BACCHUSIs another slice architecture which was designed at Darmstadt University of Technology.
There have been three successive versions |, Il, and Il (Hucd 1990, Bchnilller and Glesner
1991). The neurons perform only a hard-limiting threshold function. The final version was designed as
a sea-of-gates in 1.bm CMOS (Glesneet al 1989, Glesner andd@hnilller 1991). The chip contains
32 neurons and runs at 32 MCPS (but for 1-bit interconnections!). An associative system PAN 1V,
based on BACCHUS lll chips has been built (Palm and Palm 1991). It has eight BACCHUS Il chips
(for a total of 256 simple processors) and 2 Mbytes of standard RAM. The system was designed only
as a binary correlation matrix memory.

For even higher performances the designers have used SIMD arrays (various one- or two-dimensional
systolic architectures (Kung 1988, Kung and Hwang 1988, 1989a, 1989b, Kung and Webb 1985), made
of DSPs (digital signal processors), RISC processors, transputers or dedicated chips.

Many neuroprocessors have been builaasys of DSPs

e One of the first array-processors proposed for neural network simulation was built at IBM Palo Alto
Scientific Center (Cruet al 1987). The building block was theEP (Network Emulation Processor)
board able to simulate 4000 nodes (neurons) with 16 000 links (weights) and a speed of between
48000 and 80000 CUPS. Up to 256 NEPs could be cascaded (through a NEPBUS communication
network), thus allowing for networks of 1 million nodes and 4 million links.

e Another DSP neuroprocessor call8ANDY emerged from Fujitsu Laboratories (Kagb al 1990).

The DSP used was the Texas Instruments TMS320C30 connected in a SIMD array. SANDY/6 (with
64 processors) was benchmarked on NETtalk (Sejnowski and Rosenburg 1986) at 118 MCUPS and
141 MCPS. SANDY/8 with 256 processors was expected to work at 583 MCUPS (Yoshetaala
1991).

e The RAP (Ring Array Processor) developed at the International Computer Science Institute (ICSI,
Berkeley) is an array of between 4 and 40 Texas Instruments TMS320C30 DSPs containing 256 kbytes
of fast static RAM and 4 Mbytes of dynamic RAM each (Morgatral 1990, 1992, 1993, Kohat al
1992). These chips are connected via a ring of Xilinx programmable gate arrays, each implementing
a simple two register data pipeline and running at the DSP clock speed of 16 MHz. A single board
can perform 57 MCPS and 13.2 MUCPS, with a peak performance for a whole system reaching
640 MCPS (tested at 570 MCPS) and 106 MCUPS.

e At the Swiss Federal Institute of Technology irirEh, a 63-processor system nambBiJSIC
(Multiprocessor System with Intelligent Communication) has been developédiefMet al 1992,

1994, 1995). The architecture is similar to that of RAP but differs in the communication interface.
Three Motorola 96002 DSPs (32-bit floating-point) are mounted on one board, each one with a
Xilinx LCA XC3090 programmable gate array and an Inmos T805 transputer. Up to 21 boards
(i.e., 63 processors) fit into a standard 19-inch rack. A global 5-MHz ring connects the nodes and
communication can be overlapped with computation. The complete system has achieved 817 MCPS
and 330 MCUPS (for a 5000-1575-63 two-layer perceptron), but the peak performance is 1900 MCPS.
A fully equipped system consumes 800 W.

e PANNE (Parallel Artificial Neural Network Engine) has been designed at the University of Sydney
(Milosavlevichet al 1996) and exploits the many specialized features of the TMS320C40 DSP chip.
One board contains two DSPs together with 32 Mbytes of DRAM and 2 Mbytes of high speed
SRAM. These are accessed through a dedicated local bus. Apart from this local bus, each board has
a global bus and six programmable unidirectional 8-bit ports specially designed to allow connections
of neighboring DSPs at 20 Mbytes per second. The system has up to eight boards and is estimated
at 80 MCUPS.

Different solutions have been implemented amays (networks) of transputeréErnst et al 1990,
Murre 1993). Ernoult (1988) reported that a network of 2048 neurons with 921 600 connections running
on a 16-transputer system (T800) has reached 0.57 MCUPS. A MegaHgpeclusterfrom Parsytec
(Achen, Germany), having 64 transputers (T800) and implementing backpropagation, runs at 27 MCPS
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and 9.9 MCUPS (Mhlbein and Wolf 1989). This performance should increase tenfold on the Parsytec’s
Gigaclusterwhich uses T9000 transputers.

Instead of transputers some researchers have used RISC processors and here are some of the
neurocomputers built aarrays of RISC processars

e One solution was to design a RISC processor (dedicated for simulating neural networks) and
assembling several of them in SIMD arrays. Here we can mention the Nebial RISCdeveloped at
University College London (Pacheco and Treleaven 1989, Trelesivainl 989, Treleaven and Rocha
1990). Several neural RISCs have been connected in a linear array. A linear array interconnecting
scheme has several advantages: simplified wiring and ease of cascadability. Several arrays are linked
by an interconnecting module (Pacheco and Treleaven 1992). This allows for different topologies
(rings, meshes, cubes) and is expandable up to a maximum of 65536 processors. The flexibility is
high as the computer is of the MIMD type (multiple instructions multiple data).

e REMAP was an experimental neurocomputing project (Bengtssioal 1993, Lindeet al 1992)
with its objective being to develop a parallel reconfigurable SIMD computer using FPGAs. The
performance was estimated to be between 100 and 1000 MCUPS.

e Another solution is to use a standard RISC processor. An example B28&E RISCwhich uses
the Intel 80860 (Hiraiwaet al 1990). 128 processors are connected in a two level pipeline array
where the horizontal mesh connections serve for information exchange (weights) and vertical meshes
share dataflow. For a 256-80-32 network and 5120 training set vectors, the performance is around
1000 MCUPS.

e BSP400 from Brain Style Processor (Heemskeet al 1991, Heemskerk 1995) used low-cost
commercial microprocessors MC68701 (8-bit microprocessor). Due to the low speed of the processor
used (1 MHz!) the overall performance reached only 6.4 MCUPS when 400 processors were used.

Because both DSP and RISC processors are too powerful and flexible for the task of simulating
neural networks, a better alternative is to use smaller and more specific (less flexible) dedicated processing
elements. This can increase the computational power and also maintain a very small cost. The trend
has been marked by the use ®MD arrays (Single Instruction Multiple Data) and especiabBystolic
arrays (Kung and Hwang 1988) of dedicated chips. Systolic arrays are a class of architecture where
the processing elements and the interconnecting scheme can be optimized for solving certain classes of
algorithms. Matrix multiplication belongs to this class of algorithms (Leiserson 1982), and it is known
that neural network simulation relies heavily on matrix multiplication (Beiu 1989, Kham and Ling 1991,
Kung and Hwang 1989b). The SIMD arrays are similar structures, the main difference being that the
elementary processing elements have no controllers and that a central controller is in charge of supervising
the activity of all the elementary processing elements.

e The WARP array was probably the earliest systolic one (Kung and Webb 1985, Arnould 1985,
Annaratoneet al 1987). Although built primarily for image processing, it has also been used for
neural network simulation (Pomerleat al 1988). It is a ten (or more) processor programmable
systolic array. The system can work either in a systolic mode, or in a local mode (each processor
works independently). A performance of 17 MCUPS was obtained on a 10-processor WARP.

e ARIANE chip (Gascuelet al 1992) is a 64-neuron implementation in a L& CMOS of the
architecture first proposed by Weinfeld (1989). The chip—having 420000 transistors irf- cm
implements a fully digital Hopfield-type network, thus continuing on the lines of other Hopfield-
type implementations (Sivilotti 1986, Graft al 1986). All operations are performed by a 12-bit
adder/subtracter. There are 64 connections per neuron, making it possible to store 4096 weights. The
reported speed is 640 MCUPS, but this figure cannot be compared to standard CUPS as the chip
does not implement backpropagation. The main drawback is that the chip is not easily cascadable
(however, a four chip board has been designed).

e SNAP (SIMD Neurocomputer Array Processor) from Hecht-Nielsen Computers, Inc is based on
HNC 100 NAP chips (Neural Array Processor). The chip is a one-dimensional systolic array of four
arithmetic cells forming a ring (Hecht-Nielsen 1991, Means and Lisenbee 1991) and implementing
IEEE 32-bit floating-point arithmetic. Each arithmetic cell contains a 32-hit floating point multiplier,
floating point ALU and integer ALU, and runs at 20 MHz with all instructions being executed in
one clock cycle. Four NAPs are linked on one SNAP board. SNAP has either 32 (SNAP-32) or 64
(SNAP-64) processors (i.e., either two or four boards). The SNAP-32 performed at 500 MCPS (peak
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performance being 640 MCPS) and 128 MCUPS. Although the system performs lower than CNAPS
(described below), we have to mention that SNAP uses 32-bit floating point arithmetic.

e The APLYSIEchip is a two-dimensional systolic array dedicated for Hopfield-type networks (Blayo
and Hurat 1989). Since the outputs are oilyy and—1, the synaptic multiplication can be performed
by an adder/subtracter (like in Weinfeld’s 1989 solution). The weights are limited to 8-bit and
the partial product is computed by a 16-bit register. The adder/subtracter is of the serial type for
minimizing the area, but is also thought for the serial interconnecting scheme used. An advantage of
such a solution is its cascadability.

e TheGENESchip is a generalization of APLYSIE and it was implemented at the Swiss Federal Institute
of Technology (Lausanne) as part of tMANTRAproject (Lehmann and Blayo 1991, Lehmagn
al 1993, Viredazet al 1992). It is based on the same recurrent systolic array as APLYSIE, but
it has been enhanced to simulate several neural network architectures. The first chip of the family
was GENES HN8 implementing each synapse as a serial-parallel multiplier. Two versions have been
fabricated: Z 2 array of processors andx#4 array of processors. Weights and inputs are represented
on 8 bits. The partial sum is calculated on 24 bits. A full board, GENES SY1, was built as& 9
array of GENES HN8 X 2 chips (18x 16 synapses) and was able to reach 110 MCPS. A GENES IV
chip was later designed as an upgrade of GENES HN8 (Lehrabah1993, Viredazet al 1992). It
has 16-bit inputs and synaptic weights and uses 39 bits for the partial sum. The chip was designed
with standard cells in a &m CMOS technology on a.B x 6.2 mn? area. Together with another
chip, GACD1 (dedicated to the error computation for delta rule and backpropagation), it was used
to build the first MANTRA neurocomputer as a 4040 array of processing elements. The speed is
estimated at 500 MCPS and 160 MCUPS.

e A low-cost high-speed neurocomputer system has recently been proposed €S&ke$995) and
implemented (Avellanat al 1996). The system is based on a dedicated AU chip which has been
designed so as tdynamically adapt the internal parallelism to data precisiolt tends to achieve
an optimal utilization of the available hardware resources. The AU chip is organized as a pipeline
structure where the data path can be adapted dynamically to the encoding of the data values. The
chip has been realized in 0/Zm and has 80 mf Four chips are installed on a board together
with: a Motorola DSP96002 (used for the management of the local bus, computation of the sigmoid
function, error calculation, winner calculation and convergence check); an FPGA for communication;
local weight memories; central memory; and FIFO memory. Several boards can be used together. For
16-bit weights and with only one board the estimated performance is 480 MCPS and 120 MCUPS.

e TNP (Toroidal Neural Processor) is a linear systolic neural accelerator engine developed at
Loughborough University of Technology (Jones and Sammut 1993, Jinais1990, 1991). The
system is still under development although several prototype chips have been successfully fabricated
and tested.

e HANNIBAL (Hardware Architecture for Neural Networks Implementing Backpropagation Algorithm
Learning) was built at British Telecom. A dedicated HANNIBAL chip contains eight processing
elements (Myer®t al 1991, Orreyet al 1991, Nayloret al 1993), each one with 9216 bits of local
memory (configurable as 512 17-bit words, or 1024 9-bit words). Such a chip allows for high fan-in
neurons to be implemented; up to four lower fan-in neurons can be mapped onto one processing
element. The neuron activation function is realized by a dedicated approximation for area saving
reasons. The chip uses reduced word length (8-bit in the recall phase and 16-bit when learning
(Vincent and Myers 1992) and it was fabricated in a @m-CMOS technology. This has led to
750000 transistors in a9 11.5 mn? area. The clock frequency is 20 MHz and a single chip can
reach 160 MCPS.

e MMS32K (Glover and Miller 1994) is a SIMD having 32 768 simple processors (bit serial). A custom
chip contains 2048 processors. The bit serial architecture allows for the variation of the number of
bits (variable precision). The processors are interconnected by>a@4full crossbar switch with
512 processors connected to each port of the switch.

e SYNAPSE land SYNAPSE XSynthesis of Neural Algorithms on a Parallel Systolic Engine) from
Siemens (Ramacher 1990, 1992, Ramaehed 1991b, 1993) are dedicated to operation on matrices
based on the MA16 chip (Beichtet al 1991), which has four systolic chains (of four multipliers
and four adders each). The chip runs at 25 MHz and was fabricated jmm.GMOS. Its 610 000
transistors occupy 187 nfm The MA16 alone has 800 MCPS when working on 16-bit weights.
SYNAPSE neurocomputer is nothing else but a two-dimensional systolic array of MA16 chips
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arranged in two rows by four columns. The weights are stored off chip in local memories. Both
processor rows are connected to the same weight bus which excludes the operation on different input
patterns. The MA16s in a row form a systolic array where input data as well as intermediate results
are propagated for obtaining the total weighted sum. Multiple standard 68040s and additional integer
ALUs are used as general purpose processors which complement the systolic processor array. The
standard configuration has eight MA16s, two MC68040 for control and 128 Mbytes of DRAM. It
performs at 5100 MCPS and 133 MCUPS.

e CNAPS(Connected Network of Adaptive Processors) is a SIMD array from Adaptive Solutions, Inc
(Adaptive Solutions 1991, 1992, Hammerstrom 1990). X1 is a neural network dedicated chip with
on-chip learning. It consists of a linear array of elementary processors, each one having a 32-bit
adder and a 24-bit multiplier (fixed-point). The structure of an elementary processor is such that it
can work with three different weight lengths: 1-bit, 8-bit and 16-bit weights (Hammerstrom 1990,
Hammerstom and Nguyen 1991). X1 chips are fully cascadable, allowing the construction of linear
arrays having arbitrary many elementary processors. Another chip, the N64000, was produced in
0.8-um CMOS and 80 elementary processors have been embedded in this design. N64000 is a large
chip (one square inch) containing over 11 million transistors (Gréfial 1991) and due to defects in
the fabrication process only 64 functioning processing elements are used from one chip (the 16 more
being redundant). The same idea will be used at a higher level for the Hitachi's WSI (wafer scale
integration) to be discussed later. The maximum fan-in of one neuron is 4096 and there are 256K
programmable synapses on the2& 27.5 mn¥ chip. The chip alone can perform 1600 MCPS and
256 MCUPS for 8- or 16-bit weights (12 800 MCPS for 1-bit weight). The CNAPS has four N64000
chips running at 20 MHz on one board (256 processing elements). The maximum performance of the
system is quite impressive: 5700 MCPS and 1460 MCUPS (Adaptive Solutions 1991, 1992, McCator
1991), but these values are for 8- and 16-bit weights! Hammerstrom and Nguyen (1991) have also
compared a Kohonen self-organizing map implemented on the CNAPS: 516 MCPS and 65 MCUPS,
with the performance on a SPARC station: 0.11 MCPS and 0.08 MCUPS.

e MasPar MP-1is a SIMD computer based on the MP-1 chip (Blank 1990, MasPar 1990). It is
a general purpose parallel computer but it exhibits excellent performances when simulating neural
networks. The core chip is MP-1 which has 32 processing elements working on 32-bit floating point
numbers (each processing element can be viewed as a small RISC processor). MP-1 was fabricated
in 1.6.um CMOS on an area of 18 x 9.5 mn? and has 450000 transistors. The chip works at
a moderate clock frequency of only 14 MHz for minimizing the dissipated power. One board uses
32 MP-1 chips, thus having 1024 processing elements which are arranged in a two-dimensional array.
The connection scheme is different from others: 16 processing elements are configured<at a 4
array with an X-net mesh and form a ‘processor element cluster’. These clusters are again connected
as an X-net mesh of clusters. The processors are connected together from the edges to form a torus.
On top of that, a global communication between processing elements is realized by a dedicated
1024x 1024 crossbar interconnecting network having three stages for routing. MasPar can have from
1 to 16 boards. The largest configuration has 16 384 processing elements. €rajsgi990) have
simulated neural networks on a MasPar MP-1 with 4096 processing elements (MasPar MP-1 1100).
A 900-20-17 backpropagation network obtained 306 MCUPS, but on the largest MasPar MP-1 1200
(16 384 processing elements) performance is expected to be on the order of GCUPS.

Many other alternativeshave also been presented and we shall shortly enumerate some of them here.

e WISARDbelongs to the family of weightless neural networks or the RAM model (Aleksandercand
Morton 1990) and has been used in image recognition.

e The pRAM (probabilistic RAM) is a nonlinear stochastic device (Gorse and Taylor 1989a, b, 19906a,
1991a, c) with neuron-like behavior which—as opposed to the simple RAM model—can implement
nonlinear activation functions and can generalize after training (Clarksah1993a). It is based on
a pulse-coding technique and several chips have been fabricated. The latest digital pPRAM has 256
neurons per chip. The 16-bit ‘weights’ (probabilities) are stored in an external RAM in order to keep
the costs at a minimum. Up to 1280 neurons can be interconnected by combining five chips. Learning
(Clarkson and Ng 1993, Clarksat al 1991a, b, 1992b, 1993b, ¢, Gorse and Taylor 1990b, 1991b,
Guanet al 1992) is performed on-chip. The pRAM uses aufit CMOS gate-array with 39000
gates. A PC board has been designed and tested. A VMEbus-based neural processor board (using
the pRAM-256) has also been recently built (El-Mousa and Clarkson 1996). The current VMEbus
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version is being used for studying the various different architectures and advantages of hardware-
based learning using pRAM artificial neural networks. For this purpose, the board relies heavily on
the use of in-system programmable logic devices (ISPLD) to facilitate changing the support hardware
logic associated with the actual neural processor without the need to rewrite and/or exchange parts
of it.

Intel has several neural network solutions (Intel 1992a, b). Two commercial chips are dedicated
to radial basis functions (Watkinst al 1992): thelBMZISC036 (LeBouquin 1994) andNi1000
(Scofield and Reilly 1991) build in cooperation with Nestor. TH&CO036 (from Zero Instruction

Set Computer) contains 36 prototype neurons, where the vectors have 64 8-bit elements and can be
assigned to categories from 1 to 16 384 (i.e., the first layer has 36 neurons fully connected by 8-bit
weights to the 64 neurons of the second layer). Multiple ZISC036 chips can be easily cascaded to
provide additional prototypes, while the distance norm is selectable between city-block (Manhattan)
or the largest element difference. The ZISC036 implements a region of influence (ROI) learning
algorithm (Verleysen and Cabestany 1994) using signum basis functions with radii of 0 to 16 383.
Recall is either according to the ROI identification, or via the nearest-neighbor readout, and takes
4 us for a 250-K sec-pattern presentation rate.

The Nil000 was developed jointly by Intel and Nestor and contains 1024 prototypes of 256 5-bit
elements (i.e., the first layer has 256 neurons, while the second layer is fully connected to the first layer
by 5-bit weights and has 1024 neurons). The distance used is the city-block (Manhattan) distance. The
third layer has 64 neurons working in a sequential way, but achieving higher precision. All the weights
and the threshold are stored on board in a nonvolatile memory, as the chip is implemented in Intel's
0.8-um EEPROM process. On the same chip a Harvard RISC is used to accelerate learning (Johnson
1993b), and increases the overall number of transistors to 3.7 million. The chip implements two
on-chip learning algorithms: restricted coulomb energy or RCE (Retllgl 1982) and probabilistic

neural networks or PNN (Specht 1988). Other algorithms can be microcoded. In a pattern processing
application the chip can process 40 000 patterns per second (ldbEé¢r1992).

A generic neural architecturavas proposed by Vellasco and Treleaven (1992). The idea is to tailor
the hardware to the neural network to be simulated. This can increase the performance at the expense
of reduced flexibility. The aim of such an approach is to automatically generate application-specific
integrated circuits (ASICs). Several chips have been fabricated. Other authors have been working
on similar approaches (Disanét al 1990b, Fornaciarét al 1991a, b), or have tried a mapping onto
FPGAs (Beiu and Taylor 1995c, Botros and Abdul-Aziz 1994, Gitlkal 1993, Nigriet al 1991,

Nijhuis et al 1991, Rossmanet al 1996, Rickertet al 1991).

Several implementations of thgoltzmann machindave also been reported. A high-speed digitala
one is that of Murrayet al (1992, 1994). The chip, realized in a Ju2a CMOS technology, has 32
neural processors and four weight update processors supporting an arbitrary topology of up to 160
functional neurons. The.9x 9.8 mn? area hosts 400 000 transistors. This includes the 20480 5-bit
weights stored in a dynamic RAM (the activation and temperature memories are static). Although
clocked at 125 MHz, the chip dissipates less than 2 W. The theoretical maximum learning rate is
350 MCUPS and the recall rate is typically 1200 patterns per second. An SBus interface board was
developed using several reconfigurable Xilinx FPGAs.

ArMenXis a distributed computer architecture (Poulain Mauledrai 1996) articulated around a ring

of FPGAs acting as routing resources as well as fine grain computing resouecethércet al 1995).

This allows for a high degree of flexibility. Coarse grain computing relies on transputers and DSPs.
Each ArMenX node contains an FPGA (Xilinx 4010) tightly coupled to an Inmos T805 transputer
and a Motorola DSP56002, but other processors could be used. The node has 4 Mbytes of transputer
RAM and 384 Kbytes of DSP RAM and the FPGA connects to the left and right neighboring nodes.
The sustained performance of a node is about 5 MCPS and 1.5 MCUPS, and it is expected that the
scale-up will be linear for a 16-node machine: 80 MCPS and 24 MCUPS.

A solution which usesn-line arithmetichas been proposed in Girau and Tisserand (1996) and
should be implemented on an FPGA. A redundant number representation allows very fast arithmetic
operations, the estimated speed being 5.2 MCUPS per chip.

The use ofstochastic arithmeticomputing for all arithmetic operations of training and processing
backpropagation networks has also been considerétinfnn et al 1996). Arithmetic operations
become quite simple. The main problem in this case is the generation of numerous independent
random generators. The silicon reported uses a decentralized pseudorandom generator based on the
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principle of shifting the turn-around code for parities formed on partial stages of a feedback shift
register. A 35 x 2.8 mn? silicon prototype has been implemented inufit CMOS technology.

The prototype delivers a theoretical performance of 400 MCUPS for 12-bit weight length and 15-bit
momentum length. It is estimated that a state-of-the-art Q/@5process would allow 4K synapses
and 64 neurons should fit into 160 rArif standard cells are used; a custom design should increase
these values to: 16K synapses and 128 neurons.

Some of the latest implementations are pushing the performances even further and we shall mention

here the most promising ones, even if by our classification some of them might also fall in another class.

The RM-nc is a reconfigurable machine for massively parallel-pipelined computations and has
been proposed in Erdogan and Wahab (1992). The reconfigurability is not only in the domain of
communication and control, but also in the domain of processing elements. A fast floating point sum-
of-products circuit using special carry-save multipliers (with built-in on-the-fly shifting capability and
extensive pipelining) has been proposed and has to be implemented on FPGAs. The performance
of an RM-nc256 machine (with 256 processing FPGAS) has been estimated for NETtalk (203-60-
26 network with 13826 connections) at a speed of 2000 MCUPS. No implementation has yet been
reported.

One interesting development is based\Wi$l (Mann et al 1987, Rudnik and Hammerstrom 1988,
Tewksbury and Hornak 1989). A first neural network WSI has been developed by Hitachi (Yasunaga
et al 1989, 1990). This first version was designed only for Hopfield networks without learning.
Hitachi’'s WSI has 576 neurons with a fan-in of 64. Weights are represented on 10 bits. If larger
fan-in is required, three neurons can be cascaded to increase the fan-in to 190 (this reduces the number
of available neurons). A ‘small’ 5-inch wafer and a @82MOS technology has been used to realize

the designed 19 million transistors. The wafer has 64 chips of 12 neurons each; one redundant chip
(Zorat 1987) is used to replace faulty neurons from the other chips. Up to 37K synapses are available
on chip. For controlling the neurons and the buses there are eight more chips on the wafer. The
only way to keep the power to a reasoreabl W is aquite-slow clock rate: 2.1 MHz, but the actual
performance is still around 138 MCPS.

The same idea has been used by Hitachi (Boyd 1990) to design a WSI for multilayer feedforward
networks including the backpropagation algorithm. The weights’ accuracy has been increased to 16
bits to cope with the required precision of on-chip learning. One wafer has 144 neurons and eight
wafers have been stacked together to form a very small neurocomputer with 1152 neurons (Yasunaga
et al 1991). The reported speed is 2300 MCUPS. Using a similar architecture and the present day
state-of-the-art 0.3em CMOS technology it becomes clear that we can expect to have 10 000 neurons
WSI in the very near future.

For portable applicationslitachi has also developed &5 V digital chipwith 1048576 synapses
(Watanabeet al 1993). The chip can emulate 1024 fully connected neurons (fan-in of 1024 each)
or three layers of 724 neurons. An on-chip DRAM cell array is used to store the 8-bit weights. A
256 parallel circuit for summing product (Baugh parallel multiplier) pushes the processing speed to
1370 MCPS. A scaled-down version of the chip was fabricated using a.&MOS design rule.

It allowed an estimation of the full-scale chip: .45< 18.6 mn? and 75 mW.

The newL-neuro 2.3(Duranton 1996) is a fully programmable vectorial processor in a highly parallel
chip composed of an array of twelve DSPs which can be used not only for neurocomputing, but also
for fuzzy logic applications, real-time image processing and digital signal processing. Beside the
twelve DSPs, the chip contains: a RISC processor, a vector-to-scalar unit, a 32-bit scalar unit, an
image addressing module and several communication ports. All the DSPs are linked together: by a
broadcast bus connecting all DSPs; by two shift chains linking the DSPs as a systolic ring; by fast
neighbor-to-neighbor connections existing between adjacent DSPs; and also to an I/O port. All the
internal buses are connected together through a programmable crossbar switch. The RISC processor
of one chip can be used to control several other L-Neuro chips, allowing an expansion in a hierarchical
fashion. The chip was fabricated in Q.8n technology and has 1.8 million transistors clocked at

60 MHz. It can implement different learning algorithms such as backpropagation, Kohonen features
map, radial basis functions and neural trees (Sirat and Nadal 1990). The peak performance is estimated
at 1380 MCUPS and 1925 MCPS but no tests have yet been reported.

One very interesting approach is the no8A (Sparse Memory Architecture) neurochip (Aihata

al 1996) which uses specific models to reduce neuron calculations. SMA uses two key techniques
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to achieve extremely high computational speed without an accuracy penalty: ‘compressible synapse
weight neuron calculation’ and ‘differential neuron operation’. The compressible synapse weight
neuron calculation uses the transfer characteristics of the neuron to stop the calculation for the sum
if it is determined that the final sum will be in the saturation region. This also cancels subsequent
memory accesses for the synapse weights. The purpose of differential neuron operation is to do
calculations only on those inputs whose level has changed. A dedicated processing unit having a
22-bit adder, a 16-bit shifter, an EX-OR gate and two 22-bit registers has been designed. A test chip
having 96 processing units has been fabricated in@BEMOS and has 16 x 16.7 mn?. It runs

at 30 MHz and dissipates 3.2 W. The chip can store 12228 16-bit synapse weights and has a peak
performance of 30 GCPS (tested at 18 GCPS).

e SPERT(from Synthetic Perceptron Testbed) (Asartogt al 1992, 1993d, Wawrzynekt al 1993,
1996) is a fully programmable single chip neuromicroprocessor which borrowed heavily from the
experience gained with RAP (Morgat al 1990, 1992, 1993). It combines a general purpose integer
data path with a vector unit of SIMD arrays optimized for neural network computations and with
a wide connection to external memory through a single 128 VLIW instruction format. The chip is
implemented in 1.2¢em CMOS and runs at 50 MHz. It has been estimated at a peak performance of
350 MCPS and 90 MCUPS. The chip is intended to be a test chip for the future Torrent chip: the basic
building block of CNS-1 (see below). Recent developments have led to SPERT-Il (Wawrzyakk
1996) which has a vector instruction set architecture (ISA) based on the industry standard MIPS RISR
scalar ISA.

e NESPINN (Neurocomputer for Spike-Processing Neural Networks) is a mixed SIMD/dataflow
neurocomputer (Rotlet al 1995, Jahnkeet al 1996). It will allow the simulation of up to 512K
neurons with up to 1Dconnections each. NESPINN consists of the spike-event list (the connectivity
of sparsely connected networks is performed by the use of lists), two connectivity units containing the
network topology (a regular and a nonregular connection unit), a sector unit controlling the processing
of sectors and the NESPINN chip. The chip has a control unit and eight processing elements; each
processing element has 2 Kbytes of on-chip local memory and an off-chip neuron state memory. The
chip has been designed and simulated and will be implemented inrd.&MOS. It will operate
at 50 MHz in either SIMD or dataflow mode. The estimated performance of the system with one
NESPINN chip for a model network with 16K neurons of 83 connections each'isCllOPS.

e CNS-1 from University of California Berkeley is the acronym from Connectionist Network
Supercomputer-1 (Asandvet al 1993a—c, 1994) and is currently under development. It is targeted
for speech and language processing as well as early and high-level vision and large conceptual
knowledge representation studies. The CNS-1 is similar to other massively parallel computers
with major differences in the architectural details of the processing nodes and the communication
mechanisms. Processing nodes will be connected in a mesh topology and operate independently in a
MIMD style. The processor node, named Torrent, includes: an MIPS CPU with a vector coprocessor
running at 125 MHz, a Rambus external memory interface, and a network interface. The design is
scalable up to 1024 Torrent processing nodes, for a total of up to 2 TeraOps and 32 Gbytes of RAM.
The host and other devices will connect to CNS-1 through custom VLSI I/O nodes named Hydrant
connected to one edge of the mesh and allowing up to 8 Ghytes of I/O bandwidth. A sketch of the
future CNS-1 can be seen in figure E1.4.2. The goal set ahead is to be able to evaluate networks with
one million neurons and an average of one thousand connections per unit (i.e., a total of a billion
connections) at a rate of 100 times per second, 6t OPS and 2« 10 CUPS.

Several of the implementations presented here have been plotted in figures E1.4.3 (digital neurochips)
and E1.4.4 (dedicated neurocomputers and supercomputers). As can be seen from these two figures, some
architectural improvements are to be expected from the techniques used in designs like the SMA and the
NESPINN, which could reach speed performances similar to the CNS-1.

We shall not end this section before mentioning an interesting alternative that has recently emerged.
To cope with the limited accuracy, new learning algorithms with quantized weights have started to appear
(see also Section E1.2.4). One might call them ‘VLSI-friendly learning algorithms’, which was the topic
covered in MicroNeuro’94. Such algorithms could be used to map neural networks onto FPGAs or
to custom-integrate circuits. The first such learning algorithm (Armstrong and Gecsie 1979, 1991) is
in fact synthesizing Boolean functions using adaptive tree networks whose elements—after training and
elimination of redundant elements—perform classical (Boolean) logical operations (AND and OR). This
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Figure E1.4.2. Connectionist Network Supercomputer CNS-1 (adapted from Aséaretal 1993b).
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Figure E1.4.3. Different neurochips (circles) and classical computers (crosses) used for implementing
artificial neural networks.

line of research has been extended by using a combination of AND and OR gates after an initial layer of
threshold gates (Ayestaran and Prager 1993, Bose and Garga 1993). New learning algorithms have been
developed by quantizing other learning algorithm®liféld and Fahlman 1991, 1992, Jabri and Flower
1991, Makram-Ebeicet al 1989, Ferezet al 1992, Sakauest al 1993, Shoemakeet al 1990, Thiran

et al 1991, 1993) or by devising new ones (Fiesiral 1990, Hhhfeld and Fahlman 1991, Hollis and
Paulos 1994, Holliet al 1991, Mezard and Nadal 1989, Nakayama and Katayama 1991, Oliveira and
Sangiovanni-Vincentelli 1994, Walter 1989, Xie and Jabri 1992), a particular class being the one dealing
with threshold gates (Beiet al 1994a, Beiu and Taylor 1995a, b, 1996a, Diederich and Opper 1987,
Gruau 1993, Krauth and &tard 1987, Kim and Park 1995, Littlestone 1988, Raghavan 1988¢Raly

1993, Tan and Vandewalle 1992, 1993, Venkatesh 1989). Four overviews have compared and discussed
such constructive algoritth(nieja 1993, Fiesler 1994, Moerland and Fiesler 1996, Beiu 1996c¢).

The main conclusion is that a lot of effort and creativity has been used recently to improve digital
solutions for implementing artificial neural networks. The many designs proposed over the years make
this area a lively topic confirming its huge interest. Fresh proposals together with estimates and/or results
already show impressive performances competing with analog chips and reaching towards an area which,
not so long ago, was considered accessible only for future optical computing.
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